×
电瓷避雷器

电力工业论文_基于改进K-最近邻算法的变电站设

文章摘要:针对变电站设备三维点云数据采集缺陷造成的场景重建精度低、效率差等问题,在对识别过程进行分析的基础上,提出了一种结合K-最近邻分类算法和改进粒子群算的变电站设备分类识别方法。使用改进的粒子群优化算法来优化K-最近邻分类器的输入权重,提高了设备的分类识别精度。通过仿真进行对比分析,验证该方法的优越性。结果表明,采用该方法的分类识别效果显著,训练准确率达到100%,测试准确率达到99%,与传统识别方法相比,识别准确率从97%提高到99%,平均识别时间从85.81 s降低到0.19 s。该方法解决了变电站设备三维点云数据采集缺陷造成的场景重建精度低、效率差、识别率低等问题,有效提高了变电站设备的分类识别效果,具有良好的实用价值和可操作性。

文章关键词:

作者单位: 

论文分类号:TM63

上一篇:电力工业论文_避雷器放电计数器多重雷击动作特
下一篇:没有了

Top